
978-1-4244-1882-4/08/$25.00 © 2008 IEEE

PROC. 26th INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2008), NIŠ, SERBIA , 11-14 MAY, 2008

New Concepts of Worst-case Delay Evaluation in
Asynchronous VLSI SoC

M. Sokolovi , M. Zwolinski, and V. Litovski

Abstract – Estimation of asynchronous circuit performances,
such as speed, is one of the major issues that make that design
style still less popular than it deserves to be. Evaluating the worst
case delays in the paths of an asynchronous circuit using a simple
logic simulator would be very useful in overcoming this problem.
In this paper a method for timing analysis of the asynchronous
non-sequential circuits using a VHDL simulator is presented.
With an appropriate extension of the standard logic simulation
process, all worst case delays for all paths in a digital circuit with
only one run of the simulation can be obtained. High levels of
accuracy are achieved using different gate modelling and
statistical analysis of the results. Due to the lack of asynchronous
benchmark circuits, the method is verified on a set of asyn-
chronous circuit selected by the authors.

I. INTRODUCTION

Digital circuit design styles can be classified into two
major categories, namely synchronous and asynchronous.
A hybrid design style mixes aspects of both categories. The
major differences between synchronous and asynchronous
circuit lie in the system timing. Synchronous circuits may
be simply defined as circuits which are sequenced by one
or more globally distributed periodic timing signals called
clocks. Any state change that occurs happens on the clock
edge, and so system states are predictable. All these issues
provide a basis for good design, and simulation tool
support. Asynchronous circuits are an inherently larger
class of circuits, since they use events to control timing [1],
and no clock is used to implement sequencing. Such
circuits are also called clockless [2], [3]. Their timings are
very difficult to predict and it is the main reason for poor
design tool support [4].

Although asynchronous design is still a less travelled
road for designers, the benefits of this design style are
unanswerable. Such circuits need no clock generation and
distribution, which saves a lot of chip area, and they leave
the problems related to clock skew behind. Asynchronous
circuits are characterized with good modularity and much
easier technology migration. Power is consumed only when
useful work is done. The absence of the clock itself, redu-
ces the power consumption. These issues are very impor-
tant while designing portable systems where battery size

and lifetime are important. Very low EMI occurs during
operation, while achieving high noise immunity [4].

There is a lack of motivation for asynchronous circuit
techniques since synchronous circuit design styles have
large commercial practice and considerable pedigree [1].
For some, the motivation to pursue the study of asynchro-
nous circuits is based on the simple fact that all high-per-
formance “synchronous” design styles are “asynchronous
in the small” [5]. Because of that, some techniques for
desynchronization of synchronous circuits have appeared
lately [6], [7].

Nevertheless, some problems related to asynchronous
circuit design are still waiting to be solved. One of the most
important is the estimation of asynchronous circuit
performances. That is, determining the delays of the paths
in a particular asynchronous circuit. Early evaluation of
the paths delays in the circuit helps in avoiding early timing
problems as well as in circuit performance characterisation.
Precise paths delays can be estimated in the final steps of
the design process. The delay is extracted from the circuit
after layout synthesis. If the delays do not satisfy the
required speed of the circuit, the circuit has to be
redesigned. The same conclusion stands when timing prob-
lems occur. This strongly suggests that delay estimation
should be performed during the early phases of circuit
design.

Simulation is the simplest way to determine the circuit
delay. For complex circuits, simulation at the transistor le-
vel becomes impractical. To verify the logic function and
the timing specifications of the circuit, logic simulators
dealing with gate level descriptions are used. However, the
delay of the circuit obtained by a logic simulator depends
on the input test vectors. In order to determine the longest
and the shortest possible delays in a combinational circuit,
it has to be simulated using all 2n possible input vectors,
where n is the number of inputs. Therefore, the simulation
becomes inefficient for most circuits. On the other hand,
since logic simulation is one of the first design steps, em-
bedding worst-case delay analysis into a logic simulator
would ensure early detection of incorrect design solutions.

Parameter values in electronic circuits’ component
vary because of the following causes: process and techno-
logy; environment and temperature; and specific pheno-
mena within components (such as electromigration). These
variations affect the circuit behaviour over time. Because
of them, a 100% yield is not achievable since the responses
of all the manufactured circuits do not satisfy the required
timings. The nature of parameter variations is statistical in

M. Sokolovi and V. Litovski are with the Faculty of Electronic
Engineering, University of Niš, Aleksandra Medvedeva 14,
18000 Niš, Serbia, E-mail: {miljana, vanco}@elfak.ni.ac.yu

M. Zwolinski is with the Electronics Systems and Devices
Group, School of Electronics and Computer Science, University of
Southampton, Southampton SO17 1BJ, United Kingdom,
E-mail: mz@ecs.soton.ac.uk

the sense that all parameter values are random within a
probability interval. As a result, the response values in par-
ticular delays, are also randomly distributed within an in-
terval that depends on the nature of the mapping of pa-
rameter tolerance onto response tolerance [8].

Timing analysis tools perform the timing analysis of a
circuit consisting of primitive gates. They can calculate
circuit delays that are the result of parametric variations.
The aim of statistical timing analysis is to find how much
time might be needed to guarantee that the response of the
circuit to any input vector would always be obtained within
that time [9].

Commercial timing analysis systems are based on
statistical timing verification. A problem that often appears
in statistical timing analysis is that the longest paths often
become false paths. Moreover, in DSM (deep-submicron)
technologies, almost every path can be considered critical.
(The critical path of a digital circuit is the longest path or
the path with the largest delay between the input and the
output of the circuit [10].)

Sampling methods and direct methods can be used in-
stead of worst-case and statistical timing analysis. In direct
methods, it is assumed that formulae for mapping the para-
meter tolerances into the response tolerances are available.
These methods are usually limited to cases where the para-
meter variations are small. Nevertheless, this analysis is,
although more accurate, still very time consuming, since it
requires all gate sensitivities with respect to all possible va-
riations to be calculated.

Our aim in this paper is to demonstrate the application
of a standard logic simulator in asynchronous circuit path
delay analysis. Some known methods for timing analysis
will be given and compared. A new and very efficient pro-
cedure for worst-case delay estimation which can introduce
statistical approach and is based on an accurate delay mo-
del that takes into account the fanout influence on the total
delay will be presented. The procedure is based on netlist
modification, multiple simulations and statistical data pro-
cessing. This required specific modelling of the asynch-
ronous circuits’ building blocks. A VHDL implementation
of the method follows. The problem in the verification step
of the proposed method is the lack of asynchronous bench-
mark circuits. The method is verified on a set of chosen
asynchronous circuit. All results show the excellent
performance of the method.

II. WAYS TO ANALYZE TIMINGS

The purpose of timing analysis is to determine the
following timing constraints:
· Do the signals arrive at pins in time?
· Do the signals stay long enough at the required state to be

useful?
· Will the signals propagate with a proper slew (slope)?
· Can the hardware run with a specified speed?
· Are there any paths which need further analysis and

modification?

Timing measurements, as already mentioned, can be
performed using a circuit simulation, but such an approach
is too slow and impractical. To avoid simulations, there are
two alternative approaches for delay estimation in logic
circuits. The first is based on Static Timing Analysis (STA)
and Statistical Static Timing Analysis (SSTA), while the
second includes Monte-Carlo analysis.

STA methods evaluate digital circuit timing without
simulation. For nanometre manufacturing processes, which
have increased parameter variability, a corner-based STA
has become inadequate. To avoid this problem, a statistical
approach has been proposed: statistical static timing
analysis (SSTA). As a result of SSTA analysis pdfs
(probability density functions) are obtained. The
percentage of fabricated dies which meet a required delay,
can then be calculated or conversely, the expected
performance for a particular yield [11]. The probabilistic
nature of the timing behaviour of a circuit imposes the
statistical analysis and simulation in the selection of critical
path. However, even with their clear advantages,
developing and using statistical models and methods
requires considerable effort. The complexity of the
statistical techniques is still significantly high. These can
be reasons for avoiding statistical methods, but higher
process integration and increasing operational speed also
make them inevitable [10].

The Monte Carlo method requires a large number of
circuit simulations (analyses), giving the mean and
standard deviation of the delay at the output of the circuit
as the results. Monte Carlo simulation has two steps: a
sampling step and an analysis step. In the sampling step,
for a given set of parameters (delays of gates in this case) a
single random value is chosen according to the given
probability distribution.

An analysis of the circuit must be performed for each
new parameter value. In this way a set of different para-
meter values of the circuit output signals are obtained. The
analysis step utilizes these sampled values to derive the ar-
rival times of all output signals for the given circuit instan-
ce. The desired accuracy determines convergence criteria
of the results. Once the mean or variance converges to the
desired precision range, the procedure terminates. It takes
from a few tens to a few hundreds of Monte Carlo
simulations to achieve convergence of the results. This
means that the timing analysis step should be repeated that
many times [12]. However, since each iteration of Monte
Carlo analysis involves a transistor level simulation of the
entire circuit (or the entire circuit path), this approach will
have an unacceptable run time [13].

The use of a logic simulator for the timing analysis in
the Monte Carlo analysis can significantly speed up the
design and analysis time. A new, simplified way for timing
analysis with a VHDL logic simulator will be presented
next. It simplifies the delay evaluation procedures and
speeds them up. In this way a good base for evaluation of
asynchronous circuits performances is established. This
method will now be explained in more detail.

III. DELAY ESTIMATION WITH A LOGIC
SIMULATOR

Our method for path-delay estimation in asynchronous
non-sequential digital circuits is based on a robust delay
estimation algorithm. It makes sense to analyze the circuit
paths only in one operating sequence. Because of that, the
suggested method cannot deal with circuits with feedback
loops, unless they are broken. The proposed concept can
enable acceleration of Monte-Carlo analysis if it is
embedded within the analysis step of the Monte-Carlo
loop. The sampling step of the Monte-Carlo analysis is
performed in the usual manner.

To perform a delay estimation of all the paths in a
circuit using a logic simulator, that is a timing analysis, a
small modification to the logic simulation mechanism is
needed [14]. Neutral events that do not change the logic
value of the signal in a standard logic simulator are
ignored. If the signal description is extended to have a few
additional attributes, such as event, delay value, etc [10],
[15], then a change in any of those attributes will be consi-
dered as a non-neutral event. Simultaneous propagation of
all input vectors through the circuit is assumed. The values
of delay attributes are accumulated along structural paths,
starting from the primary inputs and ending at the primary
outputs or, if necessary, any particular node inside a circuit.
At the end of this very fast delay estimating process, after
only one run of the logic simulator, all delays of both
output signal edges are available.

A. Modelling signals and gates

For each output signal of the circuit, S, four delay
values are estimated:
d1mn(S) - the shortest path delay for a rising edge at S,
d0mn(S) - the shortest path delay for a falling edge at S,
d1mx(S) - the longest path delay for a rising edge at S,
d0mx(S) - the longest path delay for a falling edge at S.

In order to evaluate all worst-case path delays to all
the signals in the circuit with only one simulation, it is ne-
cessary to perform simultaneous simulation of the circuit
for all input vectors. To enable this, signals that connect lo-
gic gates within the circuit must contain two types of infor-
mation: events on the signal and the shortest and the lon-
gest path delays to the signal. This information is stored
within a signal description in the form of two types of
attributes: attributes that contain the delay information, as
listed above, and the attributes for triggering the delay cal-
culation processes in a gate. For a signal, S, the four attri-
butes for triggering the calculation are:
arr1mn(S) - rising transition of shortest path arrival flag,
arr0mn(S) - falling transition of shortest path arrival flag,
arr1mx(S) - rising transition of longest path arrival flag,
arr0mx(S) - falling transition of longest path arrival flag.

It should be noticed that the signal now does not
contain any logic values, as would be the case in a standard
logic simulation.

For process signals described in this way and to
perform the delay estimation, the gate model must include
two modes: the activation-propagation mode and the delay
calculation mode. Moreover, the gate description must con-
tain two separate processes; first to calculate the maximal
delay of the falling and rising transitions, and the second to
calculate the minimal delay of the falling and rising
transitions. The activation-propagation mode of the model
in each of these processes in a gate is sensitive to every
change of the signal triggering attribute. After the delay
calculation level of the model is activated, it then updates
the output signal delay according to the input signal delay
attributes and gate delay parameters. When the resulting
output delay type (delay attribute of the output signal) is
calculated, the output signal changes the particular
triggering attribute to trigger processes in the following
gates.

Fig. 1. Process for assigning the maximal delay of the falling and
rising edges for a two input NOR gate.

An example of the process for assigning the maximal
delay of the falling and rising edges for a two input NOR
gate is shown in Figure 1. The gate inputs are denoted as
in1 and in2, and the output as out1. The gate propagation
delays for the rising and falling edges at the output out1 are
denoted by tpd_lhmx (maximal time propagation delay
from low to high) and tpd_hlmx, respectively. Each rising
transition at an input of the gate means that one of the
falling transition flags at one of the input signals
(in1.arr1mx or in2.arr1mx) becomes “true”. This sets a
rising transition flag at the output signal attribute of the
gate (out1.arr1mx) to “true”. This corresponds to an OR
function. Simultaneously with setting the output flag, the
gate model calculates a new value for the longest path de-
lay. The resulting output longest path delay attribute for the
falling edge is denoted by out1.d0mx and is calculated after
taking into account the arriving longest path delays for both
gate input signals (in1.d1mx, in2.d1mx), the maximal delay
of the falling edge for this gate (a separate function assigns
this value) and the function f which depends on the gate

 generic (ifo_izl: integer:= 1;
 tpd_hlmn : real := 0.9e-9;
 tpd_lhmn : real := 1.0e-9;
 tpd_hlmx : real := 0.95e-9;
 tpd_lhmx : real := 1.05e-9);

. . .
p2: process (in1.d0mx, in1.d1mx, in1.arr0mx, in1.arr1mx,

in2.d0mx, in2.d1mx, in2.arr0mx, in2.arr1mx)
 variable r,p: real;
 variable multipl : real;
 begin

 multipl := real(ifo_izl);
 f<=fanout_func(multipl)
 r:= (f*0.95 + 0.03*(gauss_rng));

p:= (f*1.05 + 0.03*(gauss_rng));
if (in1.arr1mx or in2.arr1mx) then

 out1.d0mx <= max(in1.d1mx, in2.d1mx) + r;
 out1.arr0mx <= true;
 end if;
 if (in1.arr0mx and in2.arr0mx) then
 out1.d1mx <= max(in1.d0mx, in2.d0mx) + p;
 out1.arr1mx <= true;
 end if;

 end process p2;

fanout value. Conversely, a falling transition flag at any of
the gate input signals (in1.arr0mx, in2.arr0mx) produces a
rising transition at the output only if a falling transition has
previously arrived at the other gate input [9], [16]. This
corresponds to an AND function. The resulting output
longest path delay attribute for the falling edge, denoted by
out1.d1mx, takes into account arrived longest path delay
input signal attributes (in1.d0mx, in2.d0mx), the maximal
delay of the rising edge for this gate and the fanout
dependent function f. A similar process for the shortest path
delay estimation is given in process_mn. A delay model of
arbitrary complexity can be applied. In this figure, it is also
shown that the delays of a particular gate can be generated
by different random functions which can take into account
different input signal slopes, loading capacitances and other
parameters that influence the ranges of rising and falling
gate delays, tpd_lhmx and tpd_hlmx.

Fig. 2. Illustration of maximal delay estimation method for a 3-
input C element.

The basic principle of delay accumulation is described
in Figure 2. The figure describes the maximal delay
calculation of all paths in the simple asynchronous circuit
called C-element. Here, both rising and falling transitions
are applied to all inputs of the circuit. Both the rising and
falling transition delays are updated by each gate. The
delay estimation of the circuit stops when all transitions
reach the primary outputs. To analyze delays of the paths
the feedback line had to broken.

B. Giving the delay to a gate

In order to calculate four different worst case delays
for all paths in one digital circuit, the gate models must
contain all four types of delays. It means that each gate in a
circuit is characterized with four parameters: the maximal
delay of the rising edge, the maximal delay of the falling
edge, the minimal delay of the rising edge and the minimal
delay of the falling edge. Nevertheless, assigning a
particular delay to the gate and calculating the result is a
complex task. There are two delay components in each of

gate delay functions (they are denoted with r and p in
Figure 1). One takes into account the fact that we want to
use the gate models for statistical worst-case delay
estimation, and the second must take care of the netlist of
the entire digital circuit, that is the fanout information for
each gate in the circuit. This is expressed by the Eq. 1:

random_value_of(tpd_lhmx/tpd_hlmx/tpd_lhmn/tpd_hlmx)
*fanout_func(output)
=func(tpd_lhmx/tpd_hlmx/tpd_lhmn/tpd_hlmx) (1)

Considering the first component, we must introduce
randomness into the delay assignment process. This is the
crucial step which enables Monte Carlo analysis. The need
for statistical delay analysis comes from the variations of
the circuit parameters. Therefore, the delay estimation me-
thod must also include the influence of parameter variance
on minimal and maximal delays of all signals in the circuit.
If the delays were modelled as fixed values, the worst case
delay values would not be the real worst case values due to
the process variations. If we consider this fact, we conclude
that the solution to this problem can be delay estimation in
the usual manner, while all delay ranges in each gate ins-
tance are generated randomly. Each time the calculation
process is activated in a gate, new worst case delay values
are considered in the signal delay calculations. Since sim-
ple models are used and the calculations are still very time-
efficient, the simulations can be performed a few hundred
times to enable statistical delay analysis. In this way a
method for statistical static timing analysis using a standard
logic simulator has been developed (SSTA for SLog).

The given delay probability density function determi-
nes the delay randomness. Hence the gate parameters are
the mean values of the probability density function for a
particular gate type. The gate delay information given as
parameters incorporates the real fabrication variations of a
particular technology since worst-case delay distributions
are characterized with mean and variance values that
should be given as the fabrication technology parameters.
Each gate randomly generates the maximal and minimal
delays of the rising and falling edges with a Gaussian
distribution, with the mean and standard deviation defined
according to Eq. 2,

]2[

)]22/(2)([
)(

p

ppp
p

exp
(2)

where p represents the mean value and p
2 is the variance

of the random variable p [8]. This function can, of course,
be changed if necessary.

The second component of equation (1) deals with the
real position of the particular gate in the netlist of the entire
circuit. It is well known that the delay of the output signal
for a single gate depends on the number of gates that are
driven by that particular gate. If a gate has to drive two ga-
tes, the delay is larger than in the case of driving a single
gate. In order to increase the accuracy of the gate delay
model and the entire delay estimation algorithm, the fanout
information of each gate in the circuit netlist must be

included in the delay calculations. To do this, two major
modifications must be introduced. One modification affects
the logical gate descriptions. The second must be perfor-
med on the digital circuit netlist. In this way, the real
implementation of the circuit is taken into account. For
example, if one gate output drives two inputs of following
gates, it means that all delays of the particular gate will be
increased according to the approximation function. Also,
the technology has a large impact on the
fanout_func(output) value, since the function that gives the
fanout dependence of the delay is specific to each
technology and each gate type, and would be given by the
manufacturer. The VHDL implementation of this idea will
be shown later.

C. The path delay estimation algorithm

For statistical estimation of worst case delays, that is
SSTA using a standard logic simulator – it is necessary to
perform a few hundred estimation simulations. The exact
number of simulations is determined by the required
precision and accuracy of the results. Table 1 gives a
description of estimation phases for one sample.

The delay values of a particular gate have standard
deviation , which is in our case set to be 3%. This can be
varied if necessary. This value is derived from the
parameter tolerances for an integrated circuit fabrication
technology.

The circuit is described and simulated at the structural
(gate) level, while having available delay ranges values
(minimum and maximum delays) of all building blocks for
both rising and falling edges. When this estimation process
is embedded in a Monte Carlo loop, the delays for a gate in
a circuit will be characterized with a mean and a variance
and then randomly chosen in each estimation process. At
the start of the simulation, the circuit is excited with both
rising and falling transitions at all primary inputs. This is
referred to as the initialization phase, where all triggering
attributes of all signals at the primary circuit inputs are set
to “true”, that is the transitions at all primary inputs are
initialized. All these transitions initiate the estimation
processes in the gates at the first topological level of the
digital circuit. When these processes are completed, the
processes in the first topological level gates activate the
transitions at their outputs to enable the calculation
processes of the gates in the second topological level. As
the transitions propagate from primary inputs towards
primary outputs, the gate delays are accumulated along the
paths, since an activation transition for the gate output
signal is possible only if the delay of that gate has been
already estimated. Signal attributes for the delay
calculation and the calculation activation are used by the
processes in the gate models and their values are
dynamically updated, while the wave of activation shifts
from the input to the outputs of the gates and the entire
circuit. Once the circuit calculation activity is exhausted,
the shortest and the longest path delays are available in

signal attributes d1mn, d1mx, d0mn and d0mx of each
output signal in the circuit.

It should be mentioned that these simulations also do
not require any kind of stimuli, since they take into account
all possible signal transitions. Only initialization is needed
for the calculation processes in the entire circuit.

TABLE I
PATH DELAY ESTIMATION ALGORITHM WITH A LOGIC SIMULATOR
Input:

Output:

step 1:

step 2:

step 3:
initialize
step 4:

-Ranges of delays for rising and falling transition
for each gate
-circuit netlist
-library of circuit elements described to support
the timing analysis
-Ranges of delays for rising and falling transition
for all circuit output signal

-Set all signals in the circuit to be a composite type
consisting of the following attributes:

4 different delay information (maximal and
minimal delays of rising edge and
maximal and minimal delays of falling
edge)

4 different flags for triggering each delay type
calculation in a particular gate

-Initialize all signals triggering flags to "false"
value. Setting them to value "true" starts the
calculations.
-Initialize all signals to have zero values of the
delay attributes
-Initialize the calculation process by setting the
primary input signal triggering flags to "true"
-Until all signals and gates are processed (all
signal triggering flags should be set to "true")
perform the following steps by moving through
the topological levels of the circuit:
-The delay calculation is activated when all input
signals of the gate have triggering flags set to
"true". When the delay calculation depends on the
logic function of the gate, it is taken into account.
For example, each falling transition (flag for
falling transition is set to "true" at the input of the
gate) at an AND gate input, produces a falling
transition at its output (sets the gate output signal
triggering flag for falling transition to "true"), but
a rising transition at an input is able to produce a
rising transition at the output only if the rising
transition had previously arrived at all other gate
inputs.
-In order to complete all attributes of the gate
output signal, before activating its output
transition flag, the corresponding gate delay
should be calculated by processing delays that
arrived with input signals of the gate. The
particular delay of the chosen gate is also added to
the resulting corresponding delay.
-The estimation terminates when all triggering
flags for all output signals are set to "true".

IV. IMPLEMENTATION

As mentioned before, the proposed concept is
implemented using the VHDL hardware description

language and simulator. Matlab was used for processing
data obtained after simulations.

In order to have statistical simulation results, a
random number generator is needed. Figure 3 show a
VHDL implementation of the random number generator
with a Gaussian distribution [17].

Fig. 3. Gaussian random function generation implementation.

This function is executed 4 times in each of the gates,
once for each delay type. Function rand in this description
generates random numbers in the interval [0,1], with a
uniform distribution.

In order to verify the efficiency of the applied gate
models, we created a simple test circuit that consists of
only one logic NAND gate. This circuit was simulated 600
times and the results of the randomly generated delays of
rising and falling edges at the output of this circuit are
shown in Figure 4. In this case, the mean in the distribution
is set to 1ns while the standard deviation is 3 %. The x-axis
shows the delays in [ns] units, and the y-axis represents the
number of particular delay appearances within the
corresponding range.

Fig. 3. Histogram of the delays for NAND gate.

VHDL models of primitive logic gates and simple
asynchronous elements are kept in a VHDL library. Figure
4, 5, and 6 show VHDL modelling of a D-latch, T-latch
and 2-input C-element respectively. It should be noted that
latch circuits do not have specific conditions for activating
a calculation process, because these circuits have only 1
data input. It should also be emphasized that the T-latch
performs output change only when a falling transition
happens at its data input. Accordingly, only the delay of the
falling edge at its input can influence the delay calculation
process further.

Fig. 4. VHDL model of the Dlatch.

Fig. 5. VHDL model of the T-Latch.

entity DLatch is
generic (ifo_izl: integer:= 1;
 tr_en_qmn : real := 1.0e-9;
 tf_en_qmn : real := 0.9e-9;
 tsu_d_enmn : real := 0.45e-9;
 tr_en_qmx : real := 1.05e-9;
 tf_en_qmx : real := 0.95e-9;
 tsu_d_enmx : real := 0.55e-9);
port (q : out SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false,
false);
d, en: in SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false,
false));
end DLatch;

architecture only of DLatch is
begin

p1: process (en.d0mn, en.d1mn, en.arr0mn, en.arr1mn,
en.d0mx, en.d1mx, en.arr0mx, en.arr1mx)
 variable i, j, k ,l, m, n: real;
 variable multipl : real;
begin

 multipl := real(ifo_izl);
f<=fanout_func(multipl)

 i:= (f*1.0 + (0.03*(gauss_rng)));
 j:= (f*0.9 + (0.03*(gauss_rng)));
 k:= (f*0.45 + (0.03*(gauss_rng)));

l:= (f*1.05 + (0.03*(gauss_rng)));
 m:= (f*0.5 + (0.03*(gauss_rng)));
 n:= (f*0.55 + (0.03*(gauss_rng)));

q.arr1mn <= true;
q.arr0mn <= true;
q.d1mn <= en.d1mn + i + k;
q.d0mn <= en.d1mn + j + k;
q.arr1mx <= true;
q.arr0mx <= true;
q.d1mx <= en.d1mx + l + n;
q.d0mx <= en.d1mx + m + n;

end process;
end only;

entity TLatch is
generic (ifo_izl: integer:= 1;

tr_en_qmn : real := 1.0e-9;
tf_en_qmn : real := 0.9e-9;
tr_en_qmx : real := 1.05e-9;
tf_en_qmx : real := 0.95e-9);

port (q : out SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0,
false, false);

t : in SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false,
false));

end TLatch;
architecture only of TLatch is
begin

p1: process (t.d0mn, t.d1mn, t.arr0mn, t.arr1mn,
t.d0mx, t.d1mx, t.arr0mx, t.arr1mx)

variable i, j ,k, l: real;
variable multipl : real;

begin
 multipl := real(ifo_izl);

f<=fanout_func(multipl)
 i:= (f*1.0 + (0.03*(gauss_rng)));
 j:= (f*0.9 + (0.03*(gauss_rng)));

 k:= (f*1.05 + (0.03*(gauss_rng)));
 l:= (f*0.95 + (0.03*(gauss_rng)));

q.arr1mn <= true;
q.arr0mn <= true;
q.d1mn <= t.d0mn + i ;
q.d0mn <= t.d0mn + j ;

 q.arr1mx <= true;
 q.arr0mx <= true;
 q.d1mx <= t.d0mx + k ;
 q.d0mx <= t.d0mx + l ;

end process;
end only;

function gauss_rng return real is
variable u1, u2, v1, v2, r, q, p: real;
begin

 loop u1:=rand;
 u2:=rand;
 v1:=u1*2.0 -1.0;

v2:=u1*2.0 -1.0;
r:=v1*v1 + v2*v2;
exit when r<1.0;

 end loop;
 q:=log2(r);
 p:=(sqrt((0.0-2.0)*q/r))*v1;

return p;
end function gauss_rng;

Fig. 6. VHDL timing processes for the 2-input C element.

Fig. 7. Testbench process for writing simulation results for
minimal delay of the rising edge of all encoder output signals into
a file.

To simulate the circuit 600 times, a specific VHDL
testbench is necessary. Here the netlist is instantiated a few
hundred times. Now, for each particular input of all these
circuits, and for initialization and for the simulation itself, a
specific matrix is formed. All responses to the logic
analysis are stored in the matrix. Matrices of input and
output signals are defined with variables of type input_mat
and output_mat. This is shown in Figure 8. This code
contains the description of the process that performs the

timing analysis – log_timing1, which is used for
determining the minimal delay of the rising edges of the
output signals for one asynchronous encoder circuit. This
circuit 5 outputs. All results of this analysis are written to a
text file (encoder_mn_r.statdel).

V. EXAMPLES

When a circuit is simulated 600 times, a huge amount
of data can be expected. Since each gate model consists of
four parallel processes, for each of the signal transitions,
that gives the equivalent to four parallel simulations during
each run of the analysis. In effect, 4*600=2400 simulations
are performed per output. For a circuit that has a small
number of outputs, the resulting statistical data can be
presented in the form of a histogram.

Figure 8 shows the results obtained for C-element,
described as a logic gate. This is the easiest form of
statistical representation of the simulation results. It is
adequate only for circuits with a small number of outputs.

a)

b)
Fig. 8. Histogram of the C-element gate.

Table II shows the simulation results of the C-element
described at the structural level of abstraction shown in
Figure 2. The first column of the table shows the output
number, the second shows the delay type for that output,
and the third column gives the topological level of the

p1: process (in1.d0mn, in1.d1mn, in1.arr0mn, in1.arr1mn,
 in2.d0mn, in2.d1mn, in2.arr0mn, in2.arr1mn)

variable r,p: real;
 variable multipl : real;
begin
 multipl := real(ifo_izl);

f<=fanout_func(multipl)
 r:= ((f*1.0) + (0.03*(gauss_rng)));
 p:= ((f*0.9 + (0.03*(gauss_rng)));
 if (in1.arr0mn and in2.arr0mn) then
 out1.d0mn <= min(in1.d0mn, in2.d0mn) + r;
 out1.arr0mn <= true;
 end if;
 if (in1.arr1mn and in2.arr1mn) then
 out1.d1mn <= min(in1.d1mn, in2.d1mn) + p;
 out1.arr1mn<= true;
 end if;
end process p1;
p2: process (in1.d0mx, in1.d1mx, in1.arr0mx, in1.arr1mx,
 in2.d0mx, in2.d1mx, in2.arr0mx, in2.arr1mx)
 variable r,p: real;
 variable multipl : real;
begin
 multipl := real(ifo_izl);
 r:= (multipl*0.95 + (0.03*(gauss_rng)));

p:= ((multipl*1.05) + (0.03*(gauss_rng)));
 if (in1.arr0mx and in2.arr0mx) then

out1.d0mx <= max(in1.d0mx, in2.d0mx) + r;
out1.arr0mx <= true;

end if;
if (in1.arr1mx and in2.arr1mx) then
 out1.d1mx <= max(in1.d1mx, in2.d1mx) + p;
 out1.arr1mx<= true;
end if;

end process p2;

initialization: for J in 1 to 600 generate
encoder_inst: encoder port map (inp => inputs(J), outp => outputs(J));
inputs(J) <= (others => (0.0, 0.0, true, true, 0.0, 0.0, true, true));

end generate;
log_timing1: process
 use std.textio.all;
 file log: text open write_mode is "encoder_mn_r.statdel";
 variable line_1: line;
 variable I, J:integer;
 variable izlaz: SDA_std_logic_vector(0 to 4);

variable delay_mn_r : real;
begin
 wait for 1 ps;
 for J in 1 to 600 loop
 for I in 0 to 4 loop
 izlaz := outputs(J);
 delay_mn_r:= izlaz(I).d1mn;

write (line_1, delay_mn_r, left, 15);
end loop;

 writeline (log, line_1);
 end loop;

wait;
end process log_timing1;

particular delay type. The next two columns give the worst
case delay estimation results excluding randomness of the
delay value, without and with the fanouts of each gate. In
this case all fanouts are equal to one, giving the same
values in these two columns. The last column shows the
results of the statistical analysis of the results. It gives the
mean value and the deviation value of the particular delay
type.

TABLE II
C GATE - STRUCTURAL

statisticaloutput delay
type

top.
level

min/
max

fan-
out mean dev.

mnr 2 1.9ns 1.9ns 1.860 0.460
mxr 2 2.0ns 2.0ns 2.035 0.421
mnf 2 1.9ns 1.9ns 1.861 0.436

1.

mxf 2 2.0ns 2.0ns 2.035 0.443

Table III shows the simulation results of the four stage
asynchronous binary counter consisting of 4 T latches.
Table IV gives the timing analysis results for a generalized
C-element [18], shown in Figure 9.

TABLE III
T COUNTER

statisticaloutput delay
type

top.
level

min/
max

fan-
out mean dev.

mnr 4 3.7ns 3.7ns 3.704 0.705
mxr 4 3.9ns 3.9ns 3.898 0.071
mnf 4 3.6ns 3.6ns 3.599 0.681

1.

mxf 4 3.8ns 3.8ns 3.799 0.687

Fig. 9. Generalized C element.

TABLE IV
GENERALIZED C ELEMENT

statisticaloutput delay
type

top.
level

min/
max

fan-
out mean dev.

mnr 3 2.7ns 2.7ns 2.682 0.058
mxr 4 4.2ns 4.2ns 4.217 0.071
mnf 3 3ns 3ns 2.981 0.058

1.

mxf 4 3.8ns 3.8ns 3.816 0.070

Fig. 10. Address comparator.

A simple asynchronous address comparator unit [19] is
shown in Figure 10, and its simulation results are presented
in Table V.

TABLE V
ADDRESS COMPARATOR

statistical
out.

delay
type

topo.
level

min/
max

fan-
out mean dev.

mnr 1 0.9ns 0.9ns 0.900 0.035
mxr 1 0.95ns 0.95ns 0.954 0.036
mnf 1 1.0ns 1ns 1.000 0.036

1.

mxf 1 1.05ns 1.05ns 1.051 0.035
mnr 2 2.0ns 2ns 1.999 0.050
mxr 2 2.1ns 2.1ns 2.101 0.050
mnf 2 1.8ns 1.8ns 1.801 0.053

2.

mxf 2 1.9ns 1.9ns 1.905 0.049
mnr 3 2.8ns 2.8ns 2.773 0.055
mxr 4 4.0ns 4ns 4.000 0.072
mnf 3 2.9ns 2.9ns 2.898 0.060

3.

mxf 4 4.0ns 4ns 4.000 0.072
mnr 2 2.0ns 2ns 1.999 0.052
mxr 3 3.05ns 3.05ns 3.051 0.060
mnf 2 1.8ns 1.8ns 1.802 0.051

4.

mxf 3 2.95ns 2.95ns 2.954 0.064
mnr 1 0.9ns 0.9ns 0.900 0.036
mxr 2 2.0ns 2ns 2.002 0.053
mnf 1 1.0ns 1ns 1.006 0.035

5.

mxf 2 2.0ns 2ns 2.002 0.049

Finally, Figure 11 shows one complex asynchronous
encoder circuit described in [20], while Table VI gives its
timing analysis results.

Fig. 11. Encoder circuit.

TABLE VI
ENCODER

statistical
out.

delay
type

topo.
level

min/
max

fan-
out mean dev.

mnr 1 0.90ns 0.9ns 0.902 0.036
mxr 3 2.85ns 3.8ns 3.823 0.055
mnf 1 1.00ns 1.0ns 0.999 0.036

1.

mxf 3 3.15ns 4.2ns 4.218 0.060
mnr 1 0.9ns 0.9ns 0.900 0.038
mxr 3 2.95ns 3.9ns 3.917 0.060
mnf 1 1.00ns 1.0ns 0.998 0.035

2.

mxf 3 3.05ns 4.1ns 4.121 0.067
mnr 2 1.80ns 1.8ns 1.802 0.049
mxr 5 4.95ns 5.9ns 5.957 0.066
mnf 2 2.00ns 2.0ns 1.999 0.049

3.

mxf 5 5.15ns 6.2ns 6.263 0.066
mnr 1 0.90ns 0.9ns 0.901 0.036
mxr 3 2.85ns 3.8ns 3.819 0.058
mnf 1 1.00ns 1.0ns 1.001 0.037

4.

mxf 3 3.15ns 4.2ns 4.222 0.055
mnr 1 0.90ns 0.9ns 0.897 0.037
mxr 3 2.95ns 3.9ns 3.920 0.060
mnf 1 1.00ns 1.0ns 0.999 0.036

5.

mxf 3 3.05ns 4.1ns 4.120 0.069

Table VII gives the simulation run times and the
corresponding allocated memory for all these circuits.
These results are for 600 timing simulations per circuit,
achieved on an AMD Athlon processor at 1.14GHz with
1GB RAM.

TABLE VII
SIMULATION RUN TIMES AND ALLOCATED MEMORY

circuit CPU time [s] allocated memory [kB]
C element 6.4 19.734
T counter 7.7 20.277
Addr. comp 8.2 25.734
Gen C elem 10.5 40.443
Encoder 28.5 92.583

VI. CONCLUSION

A new concept for asynchronous circuit delay analysis
was presented in this paper. The estimation method was
incorporated into Monte-Carlo analysis, so that the
obtained results of this analysis represent statistical worst-
case delay ranges. The method generates and exploits
information about the fanout of each gate implemented in a
complex digital system and was implemented in VHDL
and verified on some particular asynchronous circuits.

REFERENCES

[1] A. Davis, and S Nowick, “An Introduction to Asynchronous
Circuits Design”, Technical Report UUCS-97-013, Computer
Science Department, University of Utah, September 1997.

[2] J. Sparso: “Asynchronous Circuit Design – A Tutorial”,
Technical University of Denmark April 2006.

[3] A. Martin, and M Nystrom, “Asynchronous Techniques for
System-on-Chip Design”, Proceedings of the IEEE, vol. 94,
issue 6, June 2006, pp. 1089 - 1120.

[4] M. Lewis and L. Brackenbury: “CADRE: A Low-power,
Low-EMI DSP Architecture for Digital Mobile Phones”,
VLSI Design, vol. 3, issue 12, 2001, pp. 333-348.

[5] J. Cortadella et al.: “Synthesis of asynchronous control circuits
with automatically generated relative timing assumptions”,
Proceedings of the 1999 IEEE/ACM international conference
on CAD, San Jose, California pp. 324-331.

[6] J. Cortadella et al.: “Desynchronization: Synthesis of
Asynchronous Circuits From Synchronous Specifications”,
IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. 25, no. 10. pp. 1904-1921, October 2006.

[7] N. Andrikos et al.: “A fully-automated desynchronization
flow for synchronous circuits”, Proceedings of the 44th
annual conference on Design automation, San Diego,
California, pp. 982-985.

[8] V. Litovski and M. Zwolinski.: “VLSI circuit simulation and
optimization”, Chapman and Hall, London, 1997.

[9] R. Spence and R. Soin.: “Tolerance design of Electronic
circuits”, Addison-Wesley Publ. Comp. Wokingham,
England, 1988.

[10] T. Mak, et al.: “New Challenges in Delay Testing of
Nanometer, Multigigahertz Designs”, Design & Test of
Computers, vol. 21, issue 3, May-June 2004, pp. 241-248.

[11] A. Agarwal, ed al “Circuit Optimization using Statistical
Static Timing Analysis”, Proc. of the 42nd Annual Conf. on
Design Automation, San Diego, California, 2005, pp. 321-
324.

[12] http://courses.ece.uiuc.edu/ece543/iscas89.html
[13] A. Agarwal, et al.: “Statistical delay computation considering

spatial correlations”, Proc. of the ASP-DAC, 2003,
Kitakyushu, Japan, 2003, pp. 271 – 276.321-324.

[14] D. Maksimovi , et al.: “Logic Simulation – Estimation of the
Worst-case characteristics of the Designed Digital Circuits”,
PhD thesis, Faculty of Electronic Engineering, University of
Niš, Serbia, June 2000.

[15] D. Maksimovi , and V. Litovski: “Tuning Logic Simulators
for Timing Analysis”, Electronic Letters, vol. 35, no. 10, May
1999, pp. 800-802.

[16] D. Maksimovi , and V. Litovski: “Logic Simulation Methods
for Longest Path Delay Estimation”, IEE Proc. Computers
and Digital Technique, vol. 149, no. 2, March 2002, pp. 53-
59.

[17] M. Zwolinski: “Digital System Design with VHDL”, Prentice
Hall, London, UK, 2004.

[18] C. Myers: “Asynchronous Circuit Design”, Unversity of Utah,
John Wiley & Sons, Inc. May, 2001.

[19] C. Myers and M. Alain “The Design of Asynchronous
Memory Management Unit” Technical Report CS-TR-93-30,
California Institute of Technology, April 1993.

[20] A. Kondratyev and K Lwin: “Design of Asynchronous
Circuits Using Synchronous CAD Tools”, IEEE Design &
Test, vol. 19, issue 4, July 2002, pp 107 – 117.

